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Abstract 
The market for smartphone applications is 

steadily growing. Unfortunately, along with this 

growth, the number of malicious applications is 

increasing as well. To identify this malware, various 

automatic code-analysis tools have been developed. 

These tools are able to assess the risk associated with 

a specific app. However, informing users about these 

findings is often difficult. Currently, on Android, 

users decide about applications based on coarse-

grained permission dialogs during installation. As 

these dialogs are quite abstract, many users do not 

read or understand them. Thus, to make the more 

detailed findings from security research accessible, 

new mechanisms for privacy communication need to 

be assessed. In our market experiment, we investigate 

how fine-grained data requests during runtime affect 

users’ information disclosure. We find that many 

users reverse their decision when prompted with a 

fine-grained request. Additionally, an effect of 

security awareness and level of detail on disclosure 

was found. 

 

 

1. Introduction 

 
The market for smartphone applications is 

steadily growing with a total number of more than 

1.5 Mio apps in Google Play [1]. These applications 

provide users with various features facilitating their 

daily lives, ranging from banking applications over 

weather apps to fun applications. While these 

applications provide various benefits, there are also 

serious risks associated with their usage. When an 

app is installed on a smartphone, depending on the 

operating system the application obtains various 

permissions allowing it to access all kinds of user 

information. Further, there is a vast amount of 

malware utilizing security gaps to harm users [2, 3]. 

Previous research has shown that users have often 

difficulties assessing the impact of information 

disclosure. Especially in the mobile app context, 

many users do not understand the permissions and 

potential risks associated with app installation [4, 5]. 

Due to this lack of knowledge, users might 

underestimate the risks, and therefore grant 

permissions they otherwise would not have given. In 

addition, research has found that users discount 

potential future risks and put higher emphasis on the 

short-term benefits of information disclosure [6, 7]. 

As privacy and security are greatly threatened, we 

want to explore if this assessment changes, when 

information is made more explicit. Especially for 

users with little security awareness and knowledge a 

more detailed, easier to understand, imminent 

information request might reduce their likelihood to 

reveal their information. This work thus explores the 

following research questions using a self-developed 

mobile application: 

1) How does the precision of an information 

request influence users’ disclosure of 

personal information? 

2) Is this effect different for users with 

different security backgrounds? 

These research questions are investigated using 

data obtained through a smartphone app offered in 

Google Play. By doing so, we meet the call for 

measuring real behavior instead of stated willingness 

to disclose [8]. This is important as users’ intentions 

often differ from user behavior in the context of 

privacy [9, 10].  

Our paper is structured as follows. First, we give 

a short overview of relevant literature. Then, we 

derive our hypotheses which are later tested within 

our study. When presenting our methodological 

approach, we discuss the advantages and 
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disadvantages of using a real application and 

introduce our research design. In chapter five, we 

present the results. Finally, we discuss our findings 

and conclude with limitations and avenues for future 

research. 

 

2. Related work 

 
In this section, we describe related work in the 

context of Android malware analysis that addresses 

threats and mitigation mechanisms. Furthermore, we 

present findings in the field of information privacy 

focusing on user risk perceptions and privacy 

behavior. 

There are different kinds of malicious 

applications in circulation [2], such as apps that send 

SMS messages to premium-rate numbers or steal 

banking data or location information. While the 

engineering effort for Android malware was very low 

in the beginning, recently, it is getting more and more 

sophisticated [3]. The Android OS itself provides 

different security protection mechanisms such as the 

internal permission model which shows the user what 

resources are accessed by the application, for 

instance, contact data or text messages. However, 

research has shown that users often do not understand 

the permissions [4, 5]. One reason is that the 

permission system is too coarse-grained and provides 

too little security information about what data are 

sent where and why. To address this issue, CRePE by 

Conti et al. [11], Apex by Nauman et al. [12] or 

DroidForce by Rasthofer et al. [13] have proposed a 

fine-grained permission model to replace Android’s 

permission model. In these approaches, a user or a 

trusted entity is able to define fine-grained policies 

such as Application X is not allowed to send my 

girlfriend’s contact data to server S before 6pm, 

which get enforced during runtime. While these 

approaches are very promising due to their fine-

grained nature, it is still an open research question if 

non-security experts are able to define such precise 

policies in a correct way or whether it overtaxes the 

user. 

The techniques underlying these approaches are 

static and dynamic code analysis approaches, or a 

combination of both. In addition to applying them to 

the permission problem, they are also essential in 

automatically detecting malicious applications [3]. 

Static analysis is a code-analysis approach that can 

analyze all paths in the application’s code (bytecode 

or source code) without executing it, while dynamic 

analysis executes the application in order to get 

concrete runtime information about the execution. 

Both have their pros and cons, but are heavily used in 

a security context [3]. For instance, if an analyst 

needs to know whether an application leaks some 

sensitive data to a specific server, one can use static 

or dynamic code analysis approaches to answer this 

question in a fully-automatic way. In the context of 

Android, FlowDroid by Arzt et al. [14] is a static 

data-flow tracking tool that scans an Android 

application for identifying data leaks before it gets 

installed on the device. A dynamic analysis approach 

for identifying data leaks is TaindDroid [15], which 

requires the execution of the application and informs 

the user about a potential data leak during runtime. 

Another important field where static and dynamic 

code analysis approaches are heavily used is the 

detection of vulnerabilities in applications. CHEX 

[16] and Mallodroid [17] are static analysis tools that 

try to identify specific vulnerabilities in Android 

applications. In comparison, Sounthiraraj et al. [18] 

combines both static- and dynamic analysis 

approaches (hybrid code analysis) in order to identify 

SSL vulnerabilities. 

When considering security and privacy, to 

identify risks it is very important not only to consider 

the approaches presented above but also to be aware 

of users’ risk perceptions and the resulting user 

behavior [19]. There is various research on risk in 

general investigating risk’s role in an individual’s 

decision making [20]. Transferring this general 

perspective to privacy, research has found that users 

often weigh benefits against perceived risks in a so 

called privacy calculus when deciding about 

information disclosure [21]. When benefits exceed 

risks, the permission request is accepted. Research 

investigating risk perceptions in this context have 

among others analyzed how these perceptions are 

formed [22], and how risk perceptions and consent 

dialogs influence users’ willingness to accept 

information requests [23-25]. For instance, research 

in the context of mobile apps has found that users 

undervalue the probability of risk [22]. 

The research community behind code-analysis 

techniques has engineered very sophisticated 

techniques to identify data leaks or similar threats, 

whereas the privacy community has very good 

experience in users’ risk perceptions. This work 

seeks to take a first step to close the gap between 

these two communities and to measure how sensitive 

data leaks can be reported in a way that the user 

understands the privacy and security impact. 

 

3. Hypotheses 

 
Research on privacy policies and app-permission 

dialogs has shown that users often do not read or 



understand them [4, 5]. This lowers the users’ ability 

to make an educated judgement about potential 

privacy risks. Further, associated risks are often not 

transparent and lie very far in the future. Due to this, 

they are discounted and valued less than the short 

term benefits of disclosure [6, 10]. This behavior is 

further encouraged by the permission dialogs used in 

Android operating systems. Users have to decide 

about permissions before installation. As it is very 

hard to assess the relevance of the permissions and 

potential benefits and risks of disclosure beforehand, 

this procedure makes it very hard to make a decision 

corresponding with users’ privacy attitude. 

The main research hypothesis of this paper is that 

risks would be more imminent if information access 

was made more explicit by presenting fine-grained 

permission requests. Fine-grained permissions can 

have a much higher degree of accuracy than coarse-

grained permissions. For instance, Android’s 

permission model provides coarse-grained 

permissions such as “Internet Access”, where a fine-

grained permission would be “Access to 

www.malicious.com”.  

Further, we pose that it would be easier for 

individuals to weigh benefits and risks when the 

concrete benefits associated with disclosure were 

more transparent. This can be achieved by displaying 

the data request at the time of data access. This way 

the abstract and unnoticed data transfer would 

become more obvious and contextual. Disclosure 

would not be an abstract risk or some unknown 

process anymore, but would instead happen directly 

in front of the user’s eyes. When users become aware 

of the data that is transferred, they may therefore be 

less willing to share the information and reject the 

data request. We therefore hypothesize that:  

H1: A fine-grained permission request during 

runtime is less likely to be accepted than a generic 

permission request before installation. 

While users might understand fine-grained 

permission requests more easily, the risk might still 

be abstract to some extent. Displaying concrete user 

information instead of the abstract name of the data 

type might increase the users’ attention and increase 

their risk perception resulting in a decreased 

willingness to disclose their data: 

H2: A data request containing concrete user 

information reduces the user’s likelihood to accept it.  

Previous research has shown that knowledge and 

experience can have a great influence on privacy 

concern and on risk perceptions [8, 26]. We therefore 

hypothesize that users that are more security aware 

and who have dedicated measures in place to protect 

their smartphones are also more likely to reject 

information requests. 

H3: Security aware users are less likely to accept 

data requests.  

Further, as security-aware users are more likely to 

understand permission requests and their 

consequences during installation, we expect that 

security-aware users are influenced less by the level 

of detail of the request than security unaware users:  

H4: Security awareness moderates the effect of 

the level of detail of the information requests on 

information disclosure. 

 

4. Methodology 

 
To test the hypotheses, we conducted a market 

experiment. In the context of privacy, intention to 

disclose as often measured in surveys and actual 

disclosure often do not match [9, 27]. Therefore, 

privacy researchers increasingly demand new 

methods that focus on real user behavior [8]. We 

attempted to meet this request by developing a 

smartphone app. We aimed at creating a situation as 

close to real life as possible. This is why instead of 

conducting a laboratory experiment, we uploaded our 

self-developed app to Google Play and measured user 

behavior within the app. This had the great advantage 

that users treated and assessed the app in the same 

way as any app downloaded from the app store. 

However, this procedure has the disadvantage that 

only little additional information about the users can 

be obtained without raising ethical concerns. Further, 

we did not have any influence on the selection of 

participants. But even considering these drawbacks, 

we believe that this realistic setting compensates for 

these disadvantages, and provides us with a unique 

opportunity to study information disclosure in the 

mobile app context. 

The app was designed based on three criteria: 

Previous research has found that users perceive 

permissions differently when they might potentially 

be needed for the functionality of the app [28]. As we 

were not able to control for these perceptions through 

a survey, one criterion was to ensure that the 

functionality of the app was clearly independent of 

the permissions and information items requested. 

Another criterion was the potential relevance or 

interest to a wide variety of people. We did not want 

to target one specific group of users. An additional 

criterion was to keep the app simple and easy to use.  

Trying to meet these criteria, we decided to 

implement a fun app, which belongs to the 

entertainment category. According to a recent study 

[29], entertainment apps resemble the second-most 

downloaded app category. These apps have the 

potential to spread very fast and to attract all kinds of 



users. In addition, there is not much functionality to 

which the need for different information items could 

be attributed. In contrast, if we had developed an app 

similar to Spotify, Facebook or a gaming application 

(most downloaded applications) which are used by a 

wide variety of users, there would have been a huge 

amount of potential influences on the users when 

assessing the necessity of different information items. 

While a fun app is not as serious as an app increasing 

usefulness, we think that especially these apps are 

critical in respect to permissions. 

The functionality of our app was quite simple. It 

played all kinds of funny noises. Thus, it was a pure 

fun-app and its usefulness was very low. However, 

these kinds of apps have the potential to attract an 

extensive user base very fast. Apps offering similar 

functionality achieve up to five million users in the 

Google Play Store. As these kinds of apps can 

contain harmful malware [30, 31] user behavior when 

handling these apps is of special interest. While we 

acknowledge that the functionality is not very 

educated, we still believe that due to these reasons it 

has been a good choice to select this functionality. 

When downloading the app, the user is first 

displayed a short tutorial, illustrating the functionality 

of the app. Then, the user is presented with the main 

screen displaying buttons with pictures. When a 

button is pressed, the app plays the corresponding 

sound. The main screen of our app is illustrated in 

Figure 1. 

 

 
Figure 1. Screenshot of the main-screen of 

the app 
 

Critically, to obtain new sounds, a user can push 

on a button called “More Sounds”. After pressing the 

button, the user is prompted to disclose some kind of 

personal information to get a new sound. This part 

represents the core of the experiment. Users were 

asked to trade their personal data for a very low 

benefit, namely a single new sound. While for ethical 

reasons user data was not transmitted to our server, 

users were made to believe that the information was 

in fact transferred. Information requests were 

assigned randomly to the users. In case users rejected 

this request, they were redirected to the main screen 

and did not receive the sound. If they accepted the 

request, it looked as if their information was 

transferred to our server, and a new sound-button 

appeared. For more sounds, users had to click the 

button again and to decide about a new information 

request. Figure 2 illustrates an exemplary request. 

 

 
Figure 2. Exemplary information request 

 

Each statement presented to the user consisted of 

four parts: The first part contained the reason why the 

provider claimed to collect the information. The 

second part displayed the information type, e.g. 

location data. The third part of the statement 

contained information about the target of the 

transmitted data, either the app provider or unknown 

third parties. Finally, we varied the granularity of the 

information request, i.e., an abstract statement stating 

that personal data is transmitted or a statement with 

concrete personal information displayed to the user. 

In respect to the reasons for data request, we 

varied among financing, app improvement, app 

provision, and personalization. Regarding the data 

sink, we varied between data transfer to the provider 

and data transfer to third parties.  We differentiated 

among five different data types: 1) location 

represents a data type often discussed in literature 

[32, 33]. Smartphones enable providers to collect 

real-time location information about their users. This 

information can be used to provide additional value 

by customizing the service to the user’s location [34]. 

However, there is also a great potential for misuse 

[35]. As a result, the privacy threats associated with 

the usage of location-based services are one of the 

biggest factors inhibiting their adoption [36]. 2) The 

phone number was used to model identifiable 

information. A phone number is unique and can be 

matched to a specific person. Therefore, revealing 

one’s phone number can be compared to revealing 

one’s identity. 3) We selected photos as third data 



type because they represent very sensitive 

information. In contrast to photos uploaded on social-

networking sites, photos on a smartphone have not 

been pre-selected by the user and thus, might be 

especially sensitive. 4) Data about contacts was 

selected as it is especially interesting to see how users 

would decide about data of their friends, a research 

field hardly investigated so far [37]. 5) Finally, we 

made the users believe that we transmit their personal 

SMS. This is a very common type of malware where 

incoming SMS are intercepted and silently 

transmitted to the attacker, i.e., the user does not 

recognize the theft [2]. However, in our case, we 

displayed a message to the user saying that SMS 

messages were transmitted to our server.  

The main focus of our experiment lay on the 

effect of the level of detail of the request on the 

users’ acceptance (H2). We hypothesized that a 

statement involving the real information to be 

transferred would increase users’ likelihood to reject 

the request. In the abstract message, we used the 

generic name of the data type, i.e., the statement 

would say that it requested the user’s phone number. 

For more explicit messages, we used the information 

available on the smartphone. Thus, the user would 

not be presented with the generic name of the data 

type but with his true phone number. For instance the 

statement would say: “In order to be able to offer the 

application we have to transmit your phone number: 

0123456 to us.”  

To do so, during installation of the app we had to 

obtain all permissions for accessing the information. 

Thus, users had actually agreed to everything 

beforehand and should be willing to accept every 

request. However, previous research has shown that 

users often do not pay close attention to permissions 

or do not understand them [38, 39]. Therefore, we 

expected that users would change their mind when 

prompted with more explicit statements as modelled 

by our app (see H1).  

The different types of information were made 

more explicit as follows: To make location 

information more explicit and personal, in one 

variation we displayed the user’s current address and 

location on a map. For the phone number, we 

displayed the user’s real phone number. To illustrate 

that we were really going to transfer photos, contacts, 

and SMS, we randomly chose three 

photos/contacts/SMS saved on the phone and 

displayed them to the user. 

The four different components were randomly 

combined to create the requests presented to the 

users. However, one restriction was that each user 

always received the same reason, as it would not 

have been logical if reasoning had varied across 

requests. Further, a user was never asked for the 

exact same request twice. Table 1 shows the different 

sentence fragments used to form the data requests. 

Depending on the final manipulation, only the 

sentence as shown in the table was displayed or we 

additionally displayed the personal information of the 

users directly extracted from their phone. 

 

Table 1. Sentence fragments 
Reasoning 

+ 

Data type 

+ 

Internal 

/external 

In order to finance 

our application… 

…we have to transmit 

your location… 

…to us. 

In order to be able 

to offer the 

application… 

…we have to transmit 

your phone number… 

…to our 

partners. 

In order to 

improve our app 

for you further… 

…we have to transmit 

your photos… 

In order to be able 

to offer you 

personalized 

sounds… 

…we have to transmit 

your contacts… 

…we have to transmit 

your text messages… 

 

When implementing the app, we took great care 

that the app would have an appealing design and that 

it made a serious impression. Our app was offered in 

three languages, English, Spanish, and German, so 

that it could be offered in many countries. This way, 

we also increased the likelihood that the request for 

information was understood by the participants.  

We took great care to meet ethical standards. In 

the app store, we provided a link to a privacy policy, 

informing users about the data accessed as well as the 

use of the data. Users who did not want to participate 

could refrain from installing the app. Users were able 

to uninstall the application at any time. As we did not 

want to infringe users’ privacy, we refrained from 

collecting any personal user information. While the 

app pretended that user data was transferred, no 

personal user data ever left the users’ phones.  

Before we uploaded the app, we conducted a pre-test 

with privacy and security researchers. In this pre-test, 

we asked participants to install and test the app. 

Feedback was integrated and the app was uploaded to 

the Play store at the end of May 2014. New apps are 

ranked very low by Google Play. Therefore, we 

asked our colleagues and friends to download and 

promote the app. As some of them knew about the 

experiment and we were not able to identify unique 

users, all users downloading the app during this 

initial phase were excluded from the consecutive 

analysis. Overall, the app remained in Google Play 

for a year. In this time, in total, 338 users 

downloaded the app. As described before, of these, 

all 75 users downloading the app in the initial phase 



(before July 2014) were excluded. Of the 263 

remaining users, 73.38 % tried to add at least one 

new sound resulting in 193 valid first decisions. 

When users added several sounds, they had to make 

more than one decision, which is why our complete 

dataset comprises 596 user decisions. 

 

5. Results 

 
5.1. Measures 

 
When a user started the app for the first time, we 

obtained data about his smartphone settings. 

However, to avoid invading the users’ privacy, we 

refrained from collecting any information that could 

identify the user. The thus obtained data was used, to 

derive a proxy for determining users’ security 

awareness. We extracted five different kinds of 

settings from the users’ smartphone: Android OS 

version, device encryption mode, screen lock, 

installed apps that are security-related, and security 

flags. We assigned a value between zero and one to 

each of these indicators and then calculated the user’s 

security awareness based on different weights 

assigned to those indicators. 

Information about the Android OS is an important 

indicator since if the latest version is installed the 

user is protected against any vulnerability that has 

been discovered in previous versions. However, older 

smartphone generations might not be updated 

because they are no longer actively supported. 

Therefore, we decided to rate the security level three-

folded (newer version available for user’s 

smartphone: 0; most recent Android version for 

user’s smartphone: .5; most recent Android version 

available: 1).  

Encrypting the local storage of a device is a good 

indicator for a higher security awareness level. Since 

Android 3.0, users can manually activate device 

encryption. However, all versions higher than 

Android 5.0 support encryption by default. Versions 

lower than 3.0 do not support disk encryption at all. 

We applied three security-levels (encryption not 

activated: 0; encryption turned on by default: .5; 

encryption manually activated: 1). 

The next indicator was the user’s screen lock. 

This can be set to none, slide, face unlock, pattern, 

pin, or password. These modes vary in respect to 

their level of security [40, 41]. The indicator is rated 

according to this security level (none: 0; slide: 0; 

pattern: .33; face unlock: .66; pin: 1; password: 1).  

Another important factor for measuring a user’s 

security awareness is the installed applications. We 

extracted all information about the installed 

applications from the phone and matched them with 

security-related applications. (A list of applications 

can be requested from the authors.) The list contained 

at least all top ten applications from every security 

category and can be considered as representative. 

Security levels are set depending on the number of 

security-relevant apps installed (none: 0; one: .25; 

two: .5; three: .75; four and more: 1)  

The last factor for security awareness was the 

activation of Android’s internal security flags: 

“unknown sources” which allows the installation of 

apps from any source instead of just the official 

Google Play store (activated: 0; deactivated: 1) and 

“verify apps” which causes Android to analyze 

installed applications for well-known malware 

(deactivated: 0; activated: 1). 

Overall, we rated the Android OS version, device 

encryption, screen lock and installed apps equally 

with 22.5 %. Security flags were rated only with 5 % 

each, as they are less reliable because also security-

unrelated reasons for enabling/disabling them exist. 

For an exemplary user with the following settings, 

security awareness would be determined as follows: 

Version Android 4 where Android 5 is the latest 

version (.5 * 22.5 %) + device encryption is on per 

default (.5 * 22.5 %) + pin lock (1 * 22.5 %) + three 

security-related applications installed (.75 * 22.5%) + 

unknown sources flag enabled (0 * 5 %), + verify app 

flag enabled (1 * 5 %)  = .67. 

In addition to security awareness, every time a 

user was shown one of the data requests (see Figure 

2), we noted and measured what data request was 

displayed, how long the user looked at the screen and 

if the user accepted or rejected the request.  

 
5.2. Analysis 

 
The user information requested in our 

experimental setting was information for which we 

had already obtained sufficient Android permissions 

during installation. Thus, we actually would not have 

had to ask the users for their consent again, and could 

have just transferred the data to our server. Therefore, 

any user rejecting the permission request reversed his 

or her original decision, providing evidence for H1. 

Table 2 displays the total number of rejects and 

accepts in our sample. As mentioned earlier, each 

time users wanted to add a new sound, they had to 

give their consent for one specific data request. Only 

if they accepted this request, did they receive a new 

sound. The next time they wanted to add a new sound 

again, a different data request was displayed. For 

instance, when trying to add a new sound the first 

time, user A might be asked to allow the app to 

transfer her phone number. If she accepted, the next 



time she wanted to download a new sound, we might 

ask her for her SMS messages.  

As the first decision might influence consecutive 

ones, Table 2 contains separate statistics for the first 

decision users have made (first row) and the later 

data requests (second row). The column Reject shows 

how many users rejected a data request, Accept 

shows how many users accepted a request and Shift 

of opinion shows how many users shifted their 

opinion to accept after first rejecting a certain data 

request. When looking at the numbers, it is 

interesting to note that 59.6 % of all users trying to 

add a new sound finally rejected the data request. 

Thus, more than half of all respondents did not stick 

with the coarse-grained permissions they granted 

during installation, but reversed their decision. Only 

51 users directly accepted data transfer when 

prompted during run-time. This provides first 

evidence that fine-grained data requests at the time of 

data access might better reflect a user’s intention than 

coarse-grained permission requests during 

application installation. By displaying fine-grained 

information during runtime, users’ likelihood to 

disclose their information seems to be substantially 

lowered (H1).   

 
Table 2. Descriptive statistics 

Decisions 

included 

Reject Accept Shift of 

opinion 

First data 

request 

115 

(59.6 %) 

51 

(26.4 %) 

27 

(14.0 %) 

Later data 

requests 

34 

(11.0 %) 

260 

(84.1 %) 

15 

(4.9 %) 

 

Interestingly, the 78 users (51 + 27) who had 

accepted the first data request, finally accepted 

further data requests in 89 % (84,1% + 4,9%) of the 

cases as well. As a result, the ratio of rejects to 

accepts was reversed for consecutive decisions 

(second row of Table 2). Only 34 data requests were 

rejected, while 275 (260 + 15) data requests were 

confirmed. 

We tested for the effect of the level of detail on 

the users’ acceptance using contingency analysis. No 

significant effect of the level of detail on user 

acceptance could be found when only considering the 

users’ first decision (
2
(1, N = 193) = . 1, p > .1). 

However, when considering consecutive decisions of 

the users who had already accepted one of the 

requests, a significant effect of the level of detail 

could be shown. The corresponding contingency 

table is displayed in Table 3. For data requests which 

displayed fine-grained user-related information, the 

percentage of rejects was significantly higher than for 

abstract data requests (
2
(1, N = 309) = 4.75, 

p  < .05). Thus, for users who had already accepted a 

data request, H2 could be confirmed for consecutive 

decisions. 

 

Table 3. Contingency table for later data 
requests 

 Reject Accept Total 

Abstract data requests 20 

(11.8 %) 

150 

(88.2 %) 

170 

Fine-grained data 

requests 

29 

(20.9 %) 

110 

(79.1 %) 

139 

 

The second research question focuses on how 

users’ security background would influence user 

decisions. To investigate this influence, we 

developed the operationalization of users’ security 

awareness described above and tested its effect on 

information disclosure. Users’ security awareness 

ranged from .05 to .56 (mean = .25; SD = .11). Thus, 

all users downloading the app displayed a low or 

medium level of security awareness. To test for the 

effect of security awareness on information 

disclosure, we conducted binary logistic regressions 

for the first decisions users’ made as well as for 

consecutive decisions. Separate regressions were 

necessary as the first decision might have influenced 

later ones. In the regression we included security 

awareness and level of detail as independent 

variables and acceptance as dependent variable. In 

addition, we controlled for information type, data 

transfer to third parties and reasoning.  

Interestingly, only considering the users’ first 

decisions in the regression, the model was not 

significant (
2
(3, N = 193) = .11, p > .1) and security 

awareness had no effect on users (p > .1). Thus, 

looking at the overall sample, H3 could not be 

confirmed. However, investigating consecutive 

decisions of the remaining users, the regression 

model was significant (
2
(3, N = 309) = 17.83, 

p < .0005). An increase in security awareness 

significantly reduced a user’s likelihood to accept a 

request (p < .05). Thus, H3 could be partially 

confirmed. Further, we found a significant interaction 

effect of detail and security awareness on acceptance 

(p < .1) partially confirming H4 as well. 

 

6. Discussion 

 
The presented study provides several theoretical 

and practical contributions. For one, the study tested 

how fine-grained permissions influence information 

disclosure. As illustrated in the results section, many 

users rejected the data requests within the app even 



though they had granted the corresponding 

permissions already during installation. This may be 

due to the fact that they did not understand the 

permission requests in the first place, as suggested by 

previous research on permission dialogs that show 

that these dialogs are not effective in transmitting 

privacy information [4]. The more fine-grained data 

requests presented at the time of information access 

appear to better enable users to decide about 

information disclosure. Indeed, more than half of all 

users rejected the first data request displayed to them. 

This finding supports previous research that has 

shown that the explicitness of a permission request 

could influence perceived risks [42]. 

In contrast to Android, in iOS users do not have 

to grant permissions before installing the application. 

Instead, they are asked to confirm the permission 

when the app accesses (sensitive) resource 

information during runtime. For instance, when a 

restaurant finder application wants to access location 

data of the user, the user is shown a prompt right 

before location data is accessed and can grant or deny 

the request. This is an approach similar to our design, 

except for the fact that the user is shown only coarse-

grained, abstract information, for instance on where 

the data is sent to. 

In the next major Android release, Android M, 

Android will roll-out a permission system similar to 

Apple’s iOS, where the user gets prompted right 

before the app tries to access (sensitive) resource data 

[43]. Our results have confirmed that from a usability 

point of view Apple’s and Android M’s permission 

model is a better way to design a proper permission 

model. However, we have further shown that more 

fine-grained permission messages do influence the 

users’ decision because it gives them a better 

understanding of what the app does with their 

personal data. Such fine-grained information about 

data flows can positively improve the protection of 

the users. 

Surprisingly, displaying concrete user-related 

information and thus, further increasing the level of 

detail, did not have any influence on users during 

their first decision about disclosure within our 

experiment. It seems that the sole existence of the 

privacy alert pointing out specific data types to be 

transferred at a specific point in time was enough to 

make nearly 60 % of users reject the request. The 

display of user-related information could only be 

shown to significantly influence users who had 

accepted a request before. In consecutive decisions, 

the display of user-related information made more 

users reject requests than an abstract statement. Even 

though H2 could be confirmed only partially we 

believe that our findings represent an important first 

step in identifying the role of direct, user-related data 

requests.  

The effect of the level of detail on information 

disclosure was shown to be moderated by the users’ 

security awareness. Only users with a medium 

security awareness accepted more detailed 

information requests. (Users with a high awareness 

had not installed the app in the first place.) Users 

with low security awareness and who had consented 

once generally accepted future decisions as well. This 

indicates that user-related, clear information 

communication only helps when the user at least has 

some awareness of privacy and security issues, but at 

the same time, is generally open to revealing at least 

some kind of data.  

 

7. Limitations and Outlook 

 
As any study, our research underlies several 

limitations which provide potential for future work.  

For one, we offered our app in Google Play and 

embedded our experiment into the app. This allowed 

us to measure real behavior. However, at the same 

time this procedure deprived us of the opportunity to 

obtain additional information about the users, as 

would have been possible in an online survey. For 

instance, it would have been interesting to learn more 

about the users’ perceived risk and benefits, or 

privacy concerns, and to test their impact on real 

behavior. Future work might combine a real life 

experiment with laboratory experiments in order to 

be able to compare the results and thus, gain further 

understanding of information disclosure. 

In our experiment, we focused on one specific 

type of app, namely a fun application. As argued in 

the paper, this was appropriate as it allowed us to 

ensure that permissions were not associated to 

functionality and as this app category is especially 

prone to fraud apps. However, it would be interesting 

to explore our findings in other contexts as well. For 

instance, it might be possible that users would assess 

the requests differently if they would obtain huge 

perceived benefits from information disclosure, or if 

they had more trust in the provider. 

To generate information requests utilizing users’ 

information, we had to request all permissions 

necessary to access all the information that might be 

requested during app usage. This resulted in a list of 

twelve total permissions. As we offered a fun app and 

as it was clear that all these permissions were not 

necessary for the application to work, privacy 

sensitive users might not have installed the 

application. Thus, our sample is comprised of users 

who either do not pay close attention to permission 



requests or do not understand the requests or do not 

value privacy very much. Future studies might 

consider this limitation and try to find other 

configurations in which also privacy sensitive users 

might participate.  

 

8. Conclusion 

 
In our study, we combined the expertise from the 

fields of security and Information Systems research 

to determine appropriate means for communicating 

information access. We find that fine-grained 

permission requests during run-time better inform 

users than coarse-grained ones before installation. 

Further, we could show that users’ security 

awareness and the level of detail of the data request 

can influence users’ disclosure behavior. 
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